Inspired by the division of labor and migration behavior in nature, this paper proposes a novel particle swarm optimization algorithm with multiple learning strategies (PSO-MLS). In the algorithm, particles are divided into three sub-swarms randomly while three learning strategies with different motivations are applied to each sub-swarm respectively. The Traditional Learning Strategy (TLS) inherits the basic operations of PSO to guarantee the stability. Then a Periodically Stochastic Learning Strategy (PSLS) employs a random learning vector to increase the diversity so as to enhance the global search ability. A Random Mutation Learning Strategy (RMLS) adopts mutation to enable particles to jump out of local optima when trapped. Besides, information migration is applied within the intercommunication of sub-swarms. After a certain number of generations, sub-swarms would aggregate to continue search, aiming at global convergence. Through these learning strategies and swarm aggregation, PSO-MLS possesses both good exploration and exploitation abilities. PSO-MLS was tested on a set of benchmarks and the result shows its superiority to gain higher accuracy for unimodal functions and better solution quality for multimodal functions when compared to some PSO variants.